

Basics of Belief Nets

National Cohesive Wildland Fire Management Strategy Science Analysis Report: Application to the Southeast Region January, 2014

Agenda

- Today:
 - The National Science Analysis
 - Preparing Data for Analysis
 - Application of Products
 - Basics of Belief Nets
- Tomorrow:
 - Exercise #1: Pivot Tables
 - Exercise #2: Naïve Networks
 - Exercise #3: Bayes Networks
 - Wrap-up

Data (county scale) Maps NOW... Bayesian Belief Networks/Pivot tables Landscape Classes/Community Clusters Combinations Bayesian Statistics and Belief Networks Options Examples of some interesting networks Priorities Using Netica Action

What are Bayesian models?

- A model that reflects the state of some part of the world and how they are related by probabilities.
- Examples: your house, or your car, your body, your community, an ecosystem, a stock-market, etc.

What are Bayesian models?

- States of the model represent all the possible worlds (or scenarios) that can exist
- Your body can be sick or healthy, you can exercise or not, you can eat well or eat junk food.
- Some states occur more frequently than others when other states are present.

What are Bayesian models?

- States of the model represent all the possible worlds (or scenarios) that can exist
- Your body can be sick or healthy, you can exercise or not, you can eat well or eat junk food.
- Some states occur more frequently than others when other states are present.
- Monday = less exercise

What are Bayesian Statistics?

- A field of statistics that explores evidence about the "true" state of the world
- Expressed in terms of probabilities or "degrees of belief"

What are Bayesian Statistics?

- A field of statistics that explores evidence about the "true" state of the world
- Expressed in terms of probabilities or "degrees of belief"
- Explores the influence that one parameter has on another
- Evidence can change the likelihood of something occurring.

What are Bayesian Statistics?

- A field of statistics that explores evidence about the "true" state of the world
- Expressed in terms of probabilities or "degrees of belief"
- Explores the influence that one parameter has on another
- Evidence can change the likelihood of something occurring.

Expressed using conceptual models and arrows to indicate cause and effect linkages

How are probability models expressed?

- Historical data provide a starting point of probabilities across a range of states or some gradient
- Considered as states, any portion of the distribution can be thought of and modeled as a scenario
- When there is no reliable data to start with, states can be assigned a uniform distribution.

Historical Footnote

- Thomas Bayes (1701-1761). First articulated what is known as Bayes Theorem in a paper published after his death in 1762.
- What is the probability of "A" when a new piece of evidence about "B" appears?
- This is the basic concept behind Bayesian Statistics that started growing in the 1950's and have recently expanded with the advent of advanced computational methods and computers.
- In the 1980's and beyond, Judea Perl and other computer scientists adopted and expanded Bayes theorem to develop analytical models of cognitive reasoning, which gave rise to Bayesian networks.

Basic concepts

Add probability histograms and conditional linkages

Causal Reasoning

Diagnostic Reasoning

Add complexity for Fire Lookout

Example 1: heavy smoke in forest

Example 2: Light smoke in croplands

Bayes Network

- A type of structure for a network
- Assumes that nodes have conditional dependencies on each other that are shown in an acyclic graph. That is, the graph has no cycle or start point.
- There are cause and effect relationships among many nodes

Bayes Network: Body Weight

Bayes Network: Body Weight

Bayes Network: Fire Lookout

Bayes Network: Prescribed Fire Network for Science

Analysis

Naïve Network

- A type of structure for a network
- Assumes that all nodes (or data variables) are independent and that the presence or absence of a node is unrelated to the presence or absence of another node
- There is no cause and effect relationship among all nodes

Naïve networks

- Each node contributes independently to the network
- Particularly useful for exploring large datasets

Naïve networks

- Each node contributes independently to the network
- Particularly useful for exploring large datasets

Why Use Belief Networks?

- Provides reasoning for the information you have (and uncertainties); does not provide answers.
- Automated and graphical way to display (and even interact with) related information.
- To seamlessly integrate other models, expert knowledge and datasets within a single platform
- Ability to update understanding with new information.
- Highly flexible.

Tomorrow: Interact with a Network Using Netica

Data (county scale) Maps **TOMORROW:** Bayesian Belief Networks/Pivot tables Hands-on exercises Landscape Classes/Community Clusters Combinations Options Priorities Action