

Preparing Data for Analysis

National Cohesive Wildland Fire Management Strategy Science Analysis Report: Application to the Southeast Region January, 2014

Data (county	scal	e)
,			- /

Maps

Bayesian Belief Networks/Pivot tables

Landscape Classes/Community Clusters

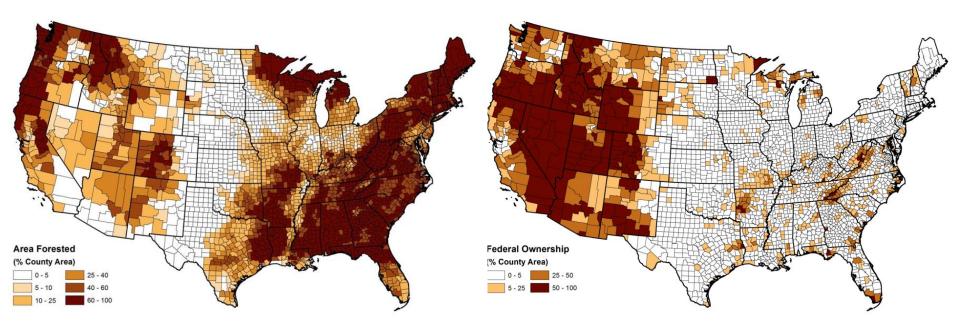
Combinations

Options

Priorities

Action

Analytical Approach


Every state, county, management unit, or community can claim its own unique fire regime, history and special circumstances.

One of the challenges within a national analysis is finding an adequate level of both generalization and specification that highlights important differences while also recognizing commonalities.

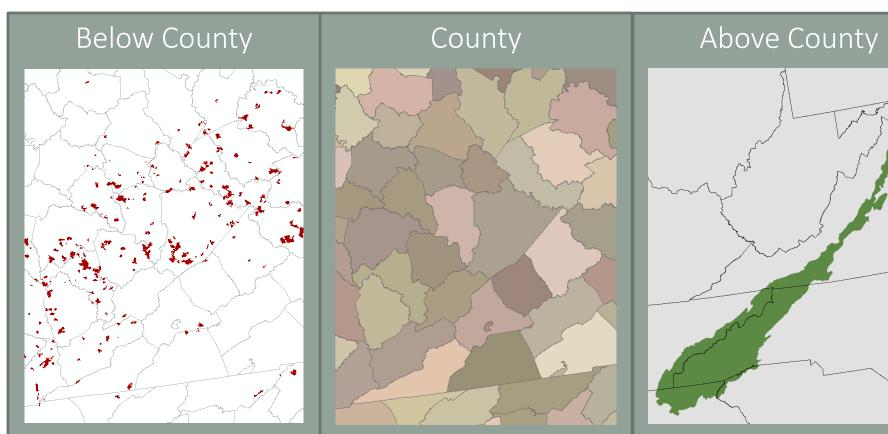
County-level Analysis

- Data spanning a broad spectrum of environmental, socioeconomic, and fire-related statistics
- County level to provide a comparable unit of analysis across data sets
 - 3,109 counties in the conterminous United States
- Spatial Scale that captures broad landscape-scale interactions and that informs policy and management options

Exploring data spatially (maps)

There are 3109 counties in the conterminous United States and each one has its own unique story.

Over 300 maps were generated to view trends in data across the United States.


Data Variable Categories (final primary variables)

- Fire Statistic (19)
 - Area Burned, 2001-2011 (MTBS/GEOMAC), Fire Reports (NFIRS, NASF)
- Fire Response (12)
 - Response arrival, duration, buildings involved (NFIRS); Structures lost (209 Reports); Fire stations and personnel (DHS)

Landcover (25)

- Vegetation type and treatment potential; Biophysical attributes; Landcover type; WUI statistics (Silvis)
- Social/Demographic (14)
 - Population; Income and Poverty rates; Timber-related productivity and jobs
- Jurisdictional (4)
 - Conservation Partners (PADUS); Federal land management

Original Data Resolutions (Spatial Data)

Area Burned Protected Areas Landcover Type Population and Census Data Timber Jobs Forest Productivity

Records and Reporting Systems

Federal

- Fire Occurrence (FPA)
- National Fire Plan Operations and Reporting System (NFPORS)
- State and Local
 - National Association of State Foresters (NASF)
 - National Fire Incident Reporting System (NFIRS)

Example of a few NASF Records

	Α	В	С	D	E	F	G	Н
1	Local Incident ID	Fire Discovery Date	year	Incident Name	Fire Discovery Time	Fire Containment Date	Containment	Reporting Agency U
2	42536	1/4/2011 0:00	2011	SWR-2011010	1433	1/4/2011 0:00	1500	AL-ALS
3	42787	2/6/2011 0:00	2011	SWR-2011020	1215	2/6/2011 0:00	1345	AL-ALS
4	42957	2/15/2011 0:00	2011	NOR-2011021	1830	2/15/2011 0:00	2000	AL-ALS
5	42960	2/15/2011 0:00	2011	NWR-2011021	1605	2/15/2011 0:00	1901	AL-ALS
6	43571	3/3/2011 0:00	2011	SWR-2011030	1227	3/4/2011 0:00	1330	AL-ALS
7	43791	3/18/2011 0:00	2011	NER-20110318	1931	3/18/2011 0:00	2008	AL-ALS
8	44094	4/2/2011 0:00	2011	NER-20110402	1832	4/2/2011 0:00	1849	AL-ALS
9	44244	4/19/2011 0:00	2011	SER-20110419	1205	4/19/2011 0:00	1215	AL-ALS
10	44463	5/20/2011 0:00	2011	ECR-20110520	1535	5/20/2011 0:00	1650	AL-ALS
11	44472	5/21/2011 0:00	2011	ECR-20110521	102	5/21/2011 0:00	156	AL-ALS
12	46248	1/1/2012 0:00	2012	NER-20120101	-002	1/1/2012 0:00		ALAFC
13	46257	1/2/2012 0:00	2012	NER-20120102	2-001	1/2/2012 0:00		ALAFC
14	46260	1/2/2012 0:00	2012	NER-20120102	2-003	1/2/2012 0:00		ALAFC
15	46450	2/8/2012 0:00	2012	NER-20120208	3-003	2/8/2012 0:00		ALAFC
16	46458	2/9/2012 0:00	2012	NER-20120209	9-001	2/9/2012 0:00		ALAFC
17	46535	2/25/2012 0:00	2012	NER-20120225	5-007	2/25/2012 0:00		ALAFC
18	46552	2/26/2012 0:00	2012	NER-20120226	5-007	2/26/2012 0:00		ALAFC
19	46816	3/19/2012 0:00	2012	NER-20120319	-004	3/19/2012 0:00		ALAFC
20	46843	3/20/2012 0:00	2012	NER-20120320	0-003	3/20/2012 0:00		ALAFC
21	46963	3/27/2012 0:00	2012	NER-20120327	7-002	3/27/2012 0:00		ALAFC
22	46964	3/28/2012 0:00	2012	NER-20120328	3-001	3/28/2012 0:00		ALAFC
23	47016	4/12/2012 0:00	2012	NER-20120412	2-002	4/12/2012 0:00		ALAFC
24	47334	6/10/2012 0:00	2012	NER-20120610	0-001	6/10/2012 0:00		ALAFC
14 4	▶ ► Sheet1 / S	heet2 / Sheet3	/ 🔁 / 🛄			- / /		
Rea	dy							

Data Processing

County-level aggregation or summaries were made for each dataset in order for it to be used in the National Analysis

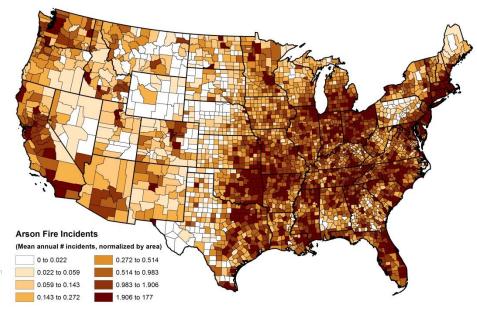
Aggregating at the County level

- Records need to have a County association
- Events or records can be totaled (i.e. # of Fires/County)
- Total area can be calculated from spatial data
- Modal values can help to describe a County's condition

Normalizing for comparable unit of analysis

- Values converted to rates or units/area
- Percentages used to make counties comparable

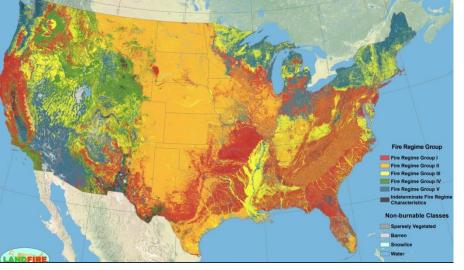
Example: Federal, State, and Local Reporting Systems

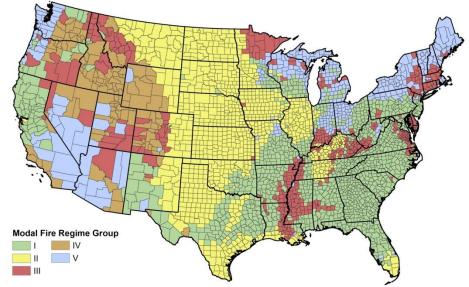

County level summaries from record systems

Dataset in its original format

1	Α	В	С	D	E	F	G	н	1.1	J	К
-	Local Incident ID	Fire Discovery Date	year	Incident Name	Fire Discovery Time	Fire Containment Date	Containment	Reporting Agency U	State	State FIPS	County
2	42536	1/4/2011 0:00	2011	SWR-2011010	1433	1/4/2011 0:00	1500	AL-ALS	AL	00	Baldwir
3	42787	2/6/2011 0:00	2011	SWR-2011020	1215	2/6/2011 0:00	1345	AL-ALS	AL	00	Baldwir
4	42957	2/15/2011 0:00	2011	NOR-2011021	1830	2/15/2011 0:00	2000	AL-ALS	AL	00	Jackson
5	42960	2/15/2011 0:00	2011	NWR-2011021	1605	2/15/2011 0:00	1901	AL-ALS	AL	00	Walker
6	43571	3/3/2011 0:00	2011	SWR-2011030	1227	3/4/2011 0:00	1330	AL-ALS	AL	00	Mareng
7	43791	3/18/2011 0:00	2011	NER-20110318	1931	3/18/2011 0:00	2008	AL-ALS	AL	00	Randol
8	44094	4/2/2011 0:00	2011	NER-20110402	1832	4/2/2011 0:00	1849	AL-ALS	AL	00	Saint C
9	44244	4/19/2011 0:00	2011	SER-20110419	1205	4/19/2011 0:00	1215	AL-ALS	AL	00	Pike
10	44463	5/20/2011 0:00	2011	ECR-20110520	1535	5/20/2011 0:00	1650	AL-ALS	AL	00	Tallapo
11	44472	5/21/2011 0:00	2011	ECR-20110521	102	5/21/2011 0:00	156	AL-ALS	AL	00	Russell
12	46248	1/1/2012 0:00	2012	NER-20120101	L-002	1/1/2012 0:00		ALAFC	AL	01	Saint C
L3	46257	1/2/2012 0:00	2012	NER-20120102	2-001	1/2/2012 0:00		ALAFC	AL	01	Saint C
14	46260	1/2/2012 0:00	2012	NER-20120102	2-003	1/2/2012 0:00		ALAFC	AL	01	Saint C
15	46450	2/8/2012 0:00	2012	NER-20120208	3-003	2/8/2012 0:00		ALAFC	AL	01	Saint C
00	7										
00 00 00 00 00				ы.	11.			.h	Ι.		
00 00 00 00								111.			1

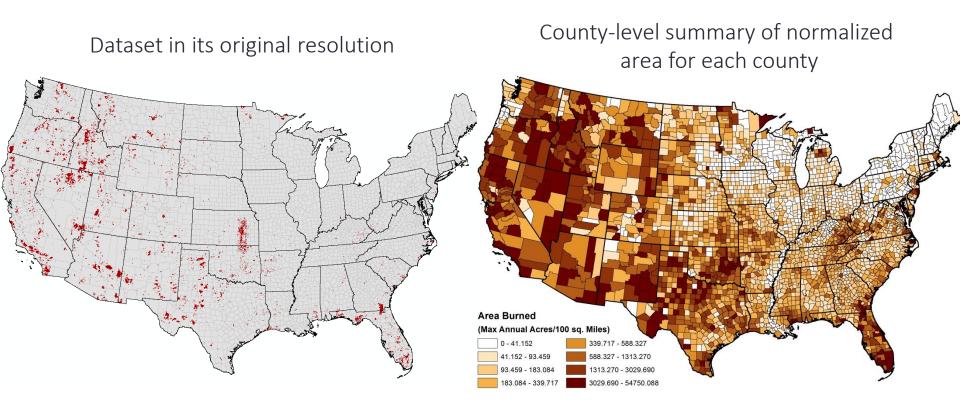
*This shows an example of some records from the NASF reporting system


County-level summary of Arson reports

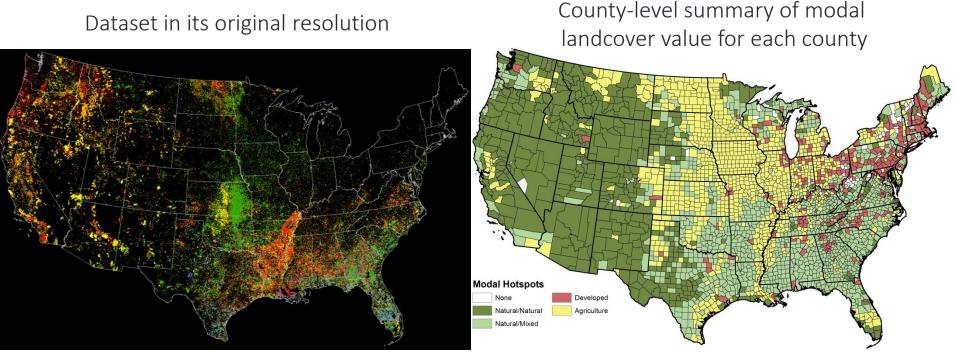

Example: Historical Fire Regime Group (LANDFIRE)

County level aggregation from raster dataset

Dataset in its original resolution


County-level summary of modal value for each county

Credit: LANDFIRE


Example: Area Burned 2001-2011 (MTBS/GEOMAC)

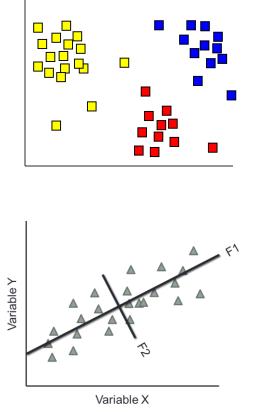
County level area summation from below county spatial data

Example: MODIS Hotspots 2001-2011

County level summary of modal values from raster dataset

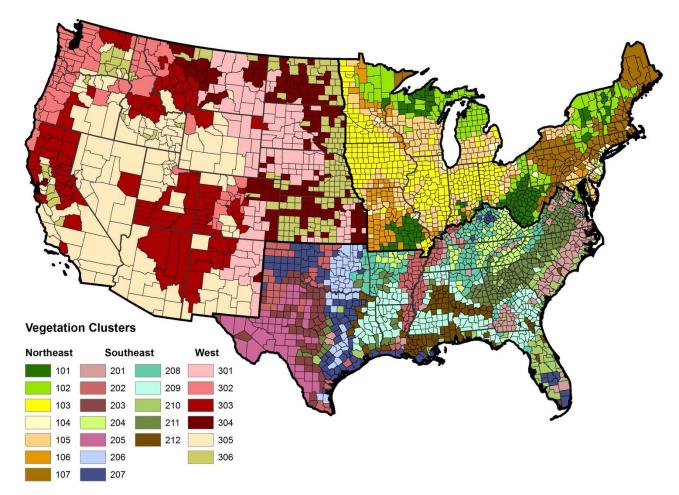
Credit: Steve Norman

Dimensional Reduction Techniques


Statistical methods for dealing with the complexity of many data variables and the variation of conditions across the Nation

Statistical Clustering

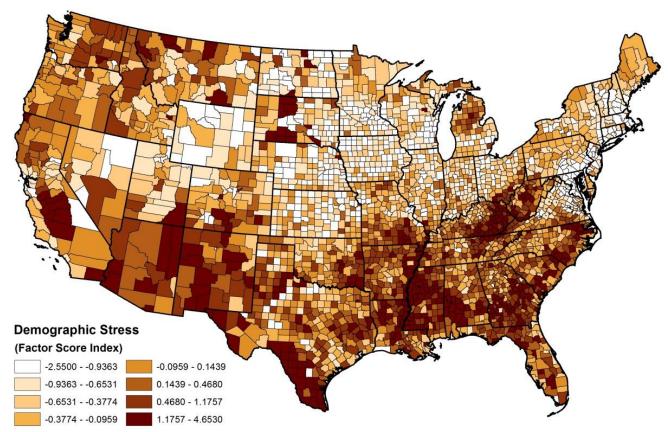
 Grouping counties with similar attributes or conditions


Factor Score Analysis

 Describing multiple factors in a single variable

Clustering Analysis Example: Vegetation Groups

Statistical clustering of LANDFIRE's Existing Vegetation Types, grouped by U.S. NVCS Subclass



Factor Score Analysis Example: Demographic Stress

Data Inputs:

- Total Population
- Population Growth
- Poverty Rates (for Households and Children)
- Household Income
- Educational Attainment

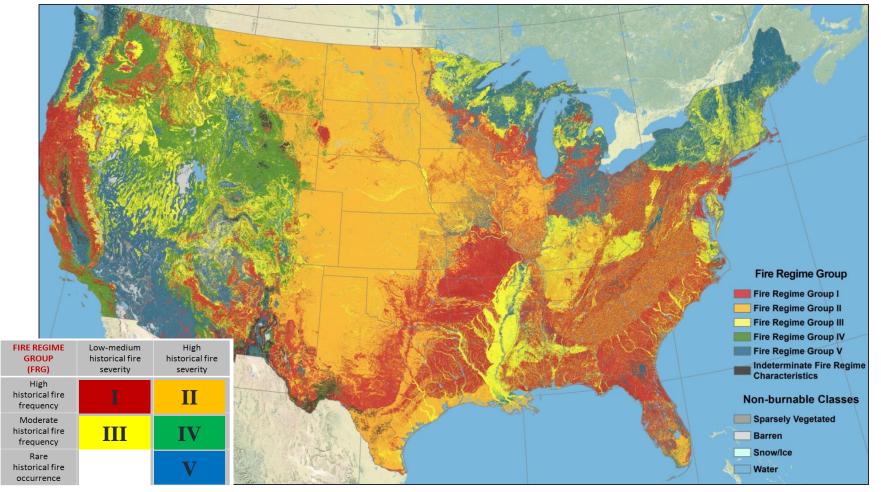
The Factor Score Analysis analyzes the combination of variables to determine the overall score index

NSAT Science Products Using Dimensional Reduction

Clustering Analysis

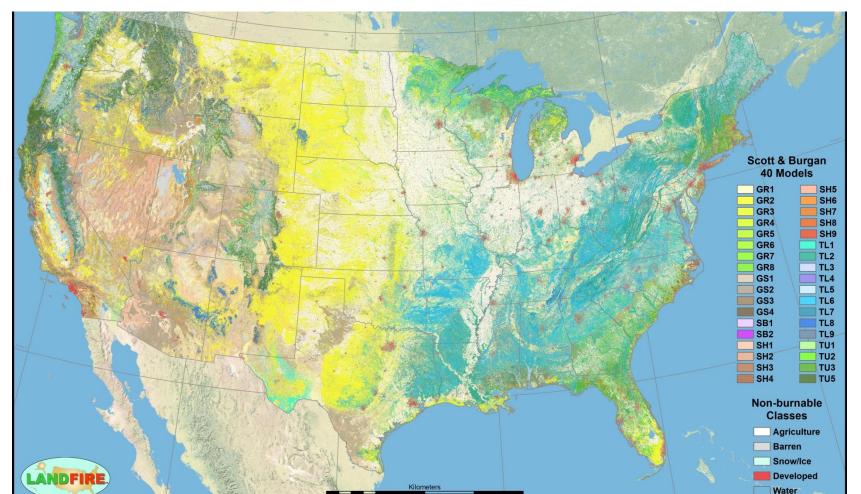
- Vegetation Groups (NVCS)
- Surface Fuels (NVCS)
- Community Clusters

Factor Score Analysis

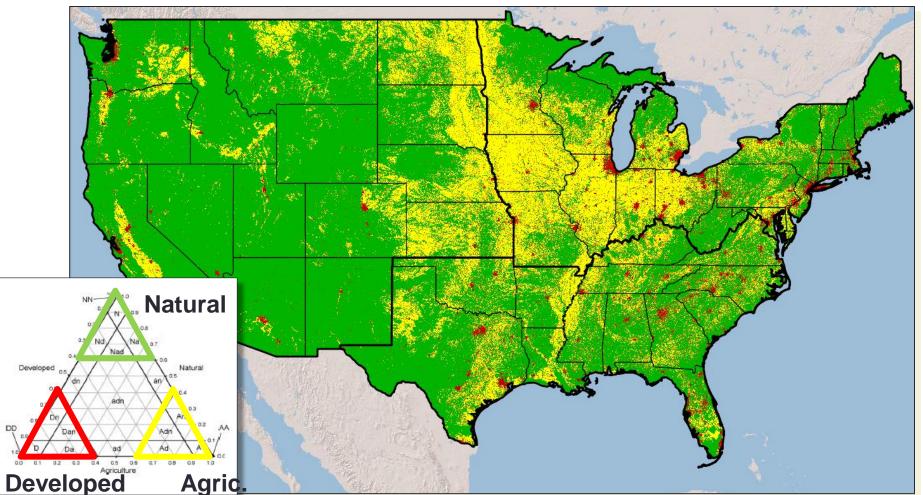

- Demographic
 - Stress
 - Advantage
- WUI
 - Area
 - Home Density
- Biophysical
 - Wetness (Precipitation)
 - Warmness (Temperature)
 - Terrain

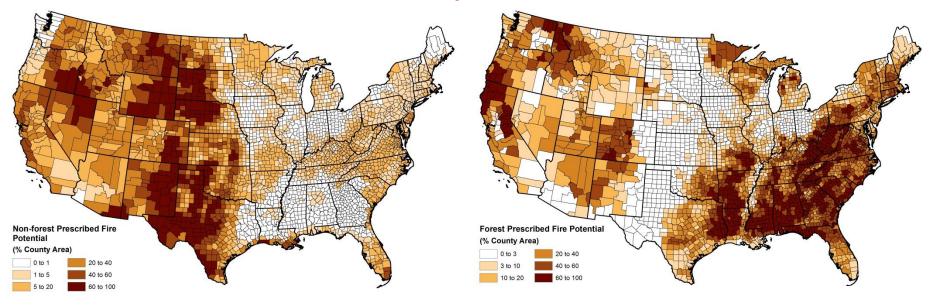
Summary of process and filters used

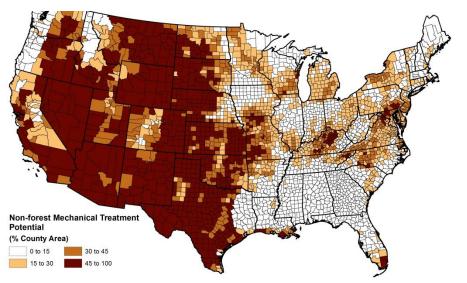
- 1. Areas with historical occurrence of wildfire
 - LANDFIRE Fire Regime Groups I, II and III, some IV
- 2. Areas with "burnable" fuels
 - LANDFIRE burnable fuel models (not: FM91 urban/developed; FM92 snow/ice; FM93 agriculture; FM98 water; FM99 barren)
- 3. Areas of Natural Vegetation
 - Riitters' Landcover: "Natural" vegetation (this further excludes agriculture and developed dominated areas)
- 4. Forested and non-forested areas were mapped separately

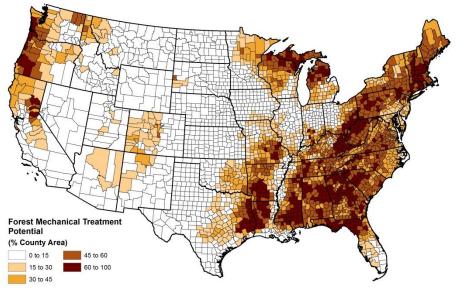

1. Areas with historical occurrence of wildfire

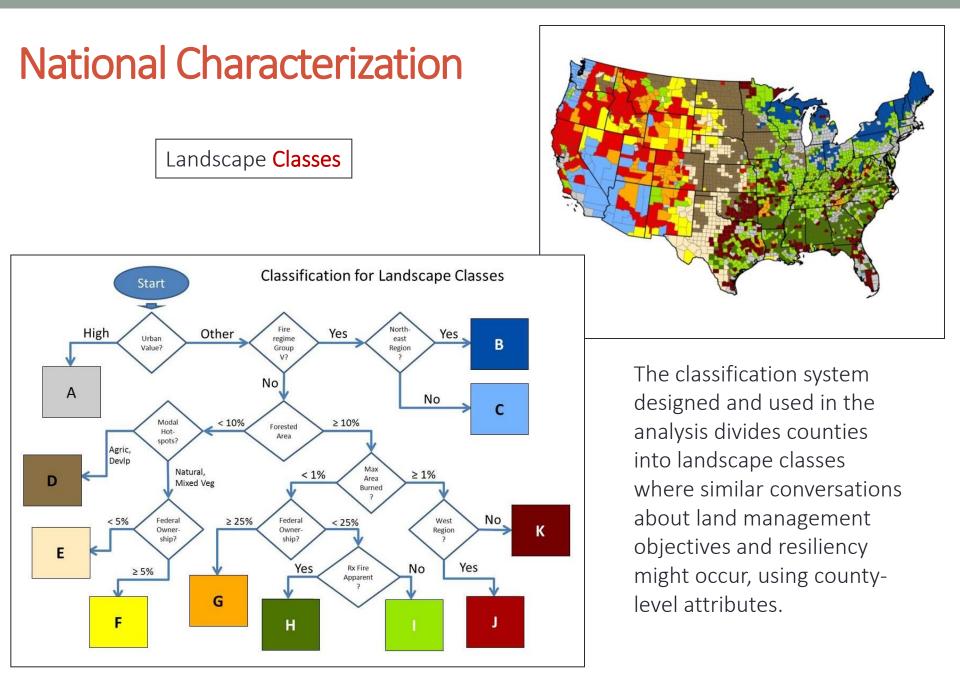
• LANDFIRE Fire Regime Groups I, II and III, some IV

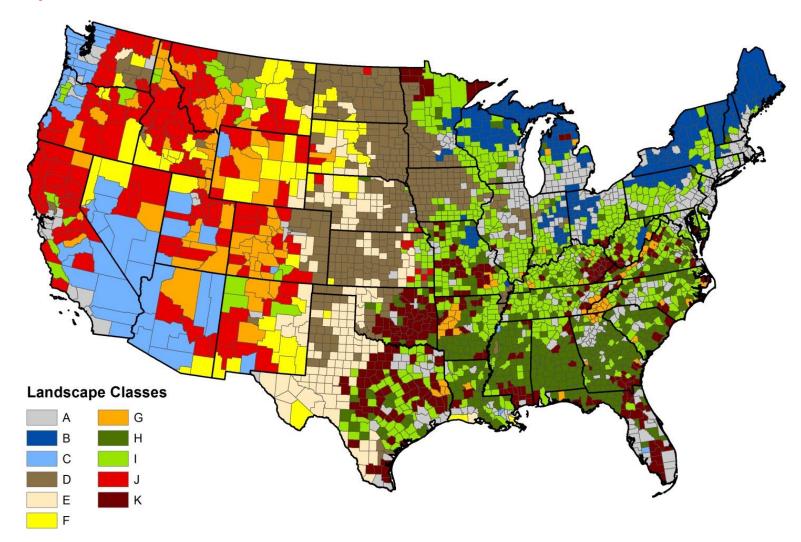

2. Areas with "burnable" fuels

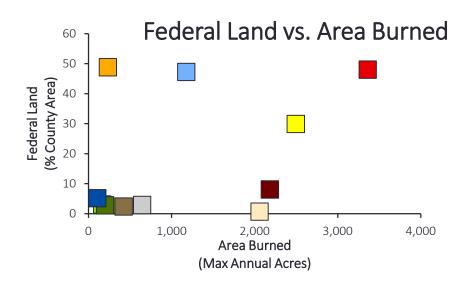

• LANDFIRE burnable fuel models (not: developed, snow/ice, ag, barren)

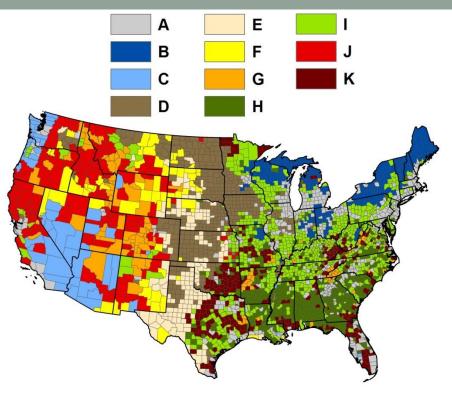


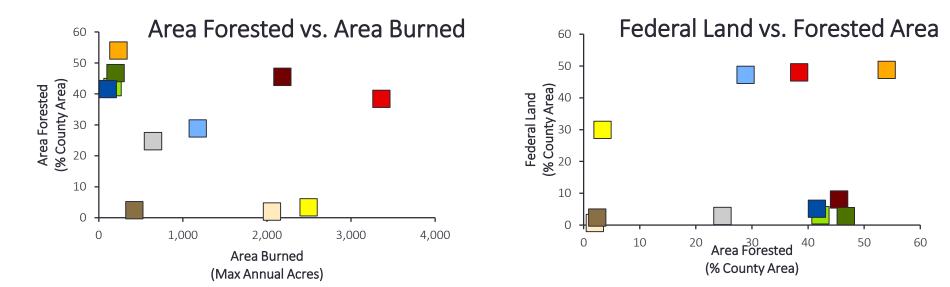

3. Areas of Natural Vegetation


• Riitters' Landcover: "Natural" vegetation

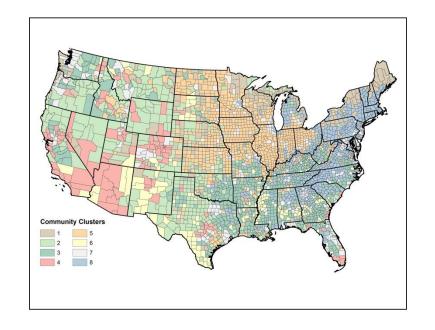







Landscape Classes

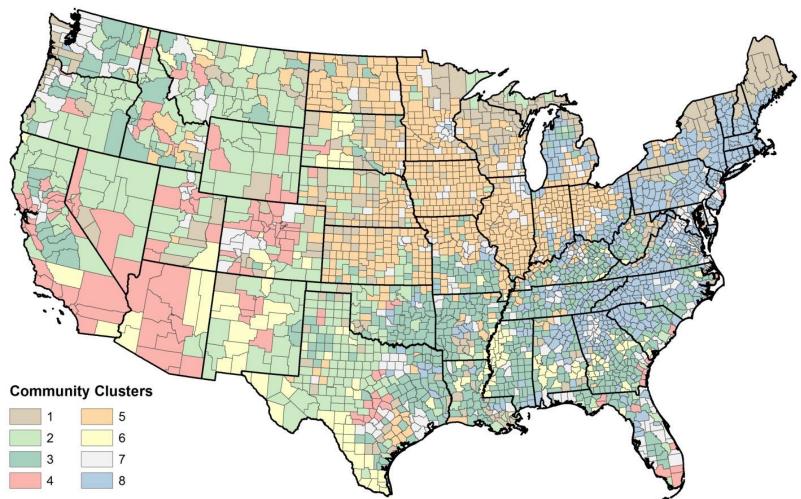
Map of the geographical distribution of the eleven landscape classes across the conterminous United States



National Characterization

Community **Clusters**

Variables used :

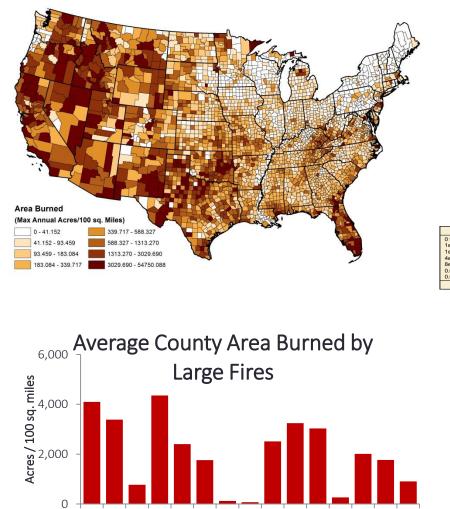

- Amount of area in the Wildland Urban Interface and the density of homes within it
- Demographic measures of household stress and economic advantage
- Measures of area burned by wildfires
- Ignition density

The wildfire risk to communities and values can be viewed as the intersection of three principal elements:

- Wildfire occurrence and extent
- Homes and communities
- Social and economic resources

Community Clusters

Geographical affinity of several clusters is apparent, but is not as strong as the resiliency classes. This result highlights the fact that there are counties with similar fire histories, WUI patterns, and socioeconomic attributes scattered throughout the country.


County-level Data Assembled

A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V
1 IDnum	NumCases	resilclass	commclus8	combo_class	region	FIPS5	STATE	COUNTY	stateabv	SQMI	D_Mchn_pct	Dom_PAD	Log_All_Prds rd	buff_pct	tot_dstb_pct to	t_pct_fed To	ot_Pct_PAD fm	ech_35	nfmech_35 E	coregion I	FuelClusR
2 1001	604	Н	7	7H	SE	1001	1	1	AL	604	8.964	State	4.194	79.55	8.96	0	2.75	59.03	0.15	231	203
3 1003	1654	1	7	71	SE	1003	1	3	AL	1653.6	8.684	State	4.152	67.41	9	1.96	10.18	42.61	1.63	232	207
4 1005	905	н	6	6H	SE	1005	1	5	AL	904.5	10.894	State	4.349	67.86	10.94	0.7	5.26	51.91	0.02	231	203
5 1007	626	н	3	3H	SE	1007	1	7	AL	626.2	12.774	USFS	4.061	76.84	12.81	15.94	19.81	68.33	1.03	231	201
6 1009	651	1	8	81	SE	1009	1	9	AL	650.6	4.822	State	3.838	90.9	4.82	0	0.09	61.61	2.57	231	203
7 1011	626	н	6	6H	SE	1011	1	11	AL	626.1	6.429	State	4.076	59.86	6.43	0	0.75	47.26	0.04	231	203
8 1013	778	н	3	3H	SE	1013	1	13	AL	777.8	13.282	None	4.225	70.89	13.28	0	0	60.09	0.00	231	201
9 1015	612	н	8	8H	SE	1015	1	15	AL	612.3	3.564	USFS	3.355	86.94	3.57	16.55	19.2	61.51	0.82	231	203
10 1017	603	н	1	1H	SE	1017	1	17	AL	603	10.78	OGov	3.912	82.92	10.78	0	0.08	68.62	0.15	231	201
1019	600	к	3	ЗК	SE	1019	1	19	AL	600	7.027	OGov	3.922	81.39	7.65	2.65	10.68	52.86	1.73	231	203
12 1021	701	Н	8	8H	SE	1021	1	21	AL	700.7	8.36	USFS	4.018	83.05	8.36	5.09	5.98	65.42	0.08	231	203
1023	921	н	3	зн	SE	1023	1	23	AL	920.9	16.611	DODE	4.545	62.83	16.61	0.6	1.26	56.61	0.04	231	201
4 1025	1252	Н	6	6H	SE	1025	1	25	AL	1252.4		State	4.723	56.49	16.31	0	4.22	50.64	0.14	231	201
15 1027	606	Н	3	ЗН	SE	1027	1	27	AL	606		USFS	3,974	83.84	12.03	18.09	18.69	75.35	0.11	231	201
1029	561	K	3	3K	SE	1029	1	29	AL	561		USFS	3.93	76.29	9.16	35.72	36.63	66.88	0.18	231	201
1031	680	н	8	8H	SE	1031	1	31	AL	680.4		DODE	4.023	84.9	7.74	2.99	2.99	56.69	0.00	232	203
1033	624		5	51	SE	1033	1	33	AL	623.5		State	3.663	69.69	6.8	2.22	16.27	40.38	1.31	231	203
1035	853	н	6	6H	SE	1035	1	35	AL	852.7		State	4.327	67.25	17.52	0	0	56.78	0.00	232	203
1035	666	н	3	3H	SE	1035	1	37	AL	666.4		State	4.082	69.81	13.73	0	11.28	62.29	0.18	231	203
1037	1044	н	1	1H	SE	1039	1	39	AL	1043.8		USFS	4.292	83.01	10.23	8.22	11.5	62.02	0.00	232	201
1033	611	Н	3	3H	SE	1035	1	41	AL	610.9		State	4.232	77.79	10.23	0.22	0.14	60.63	0.00	232	203
23 1041	755	1	8	81	SE	1041	1	43	AL	754.9		OGov	3.673	94.22	4.93	0	1.73	56.14	2.48	231	201
1045	563	н	1	1H	SE	1045	1	45	AL	562.8		DODE	3.666	85.64	6.56	12.01	12.01	59.78	0.01	231	203
25 1047	994	н	6	6H	SE	1047	1	47	AL	993.8		OGov	4.18	71.92	7.94	0.35	1.71	49.15	0.37	231	203
26 1049	779	K	8	8K	SE	1049	1	49	AL	778.5		NPS	3.795	95.8	4.15	1.72	1.92	58.53	0.88	231	203
27 1051	657	Н	8	8H	SE	1051	1	51	AL	657.1		OGov	3.773	87.37	4.07	0	5.08	61.31	0.12	231	203
1053	953	Н	3	3H	SE	1053	1	53	AL	953.1		USFS	4.154	71.66	15.84	4.76	5.09	55.84	0.14	232	207
1055	549	A	8	8A	SE	1055	1	55	AL	548.8		OGov	3.571	92.7	4.54	0	2.14	60.23	1.83	231	203
30 1057	629	Н	1	1H	SE	1057	1	57	AL	629.3	12.505	State	4	80.77	12.5	0	0.88	70.11	0.58	231	201
31 1059	647	1	3	31	SE	1059	1	59	AL	646.5	8.632	OFed	3.818	83.4	8.63	3.74	3.88	62.42	0.88	231	201
32 1061	579	н	3	3H	SE	1061	1	61	AL	579	3.269	State	3.91	88.63	3.27	0	1.94	46.18	0.00	232	206
33 1063	660	Н	6	6H	SE	1063	1	63	AL	660	11.652	OGov	4.158	63.39	11.65	0.88	2.46	47.15	0.26	231	203
1065	657	н	3	ЗH	SE	1065	1	65	AL	656.5	8.611	USFS	4.193	71.84	8.61	6.96	9.09	49.12	0.10	231	203
35 1067	568	Н	1	1H	SE	1067	1	67	AL	568.4	7.781	None	3.925	76.71	7.78	0	0	47.53	0.00	231	203
36 1069	582	Н	3	3H	SE	1069	1	69	AL	581.5	2.919	Prvt	3.682	89.44	2.92	0	0	40.18	0.00	232	206
37 1071	1127	1	3	31	SE	1071	1	71	AL	1126.9	2.935	State	4.005	64.9	3.28	4.64	15.37	40.69	1.28	221	203
38 1073	1124	A	8	8A	SE	1073	1	73	AL	1123.8	6.024	OGov	3.761	85.27	6.02	0	0.51	52.57	3.24	231	203
39 1075	606	Н	1	1H	SE	1075	1	75	AL	605.5	13.362	State	3.995	85.38	13.36	0	2.75	74.21	0.00	231	201
10 1077	719	1	3	31	SE	1077	1	77	AL	718.6	2.089	OGov	3.513	88.21	2.38	3.05	12.9	47.11	0.38	231	203

Environmental, socioeconomic, and fire related data.

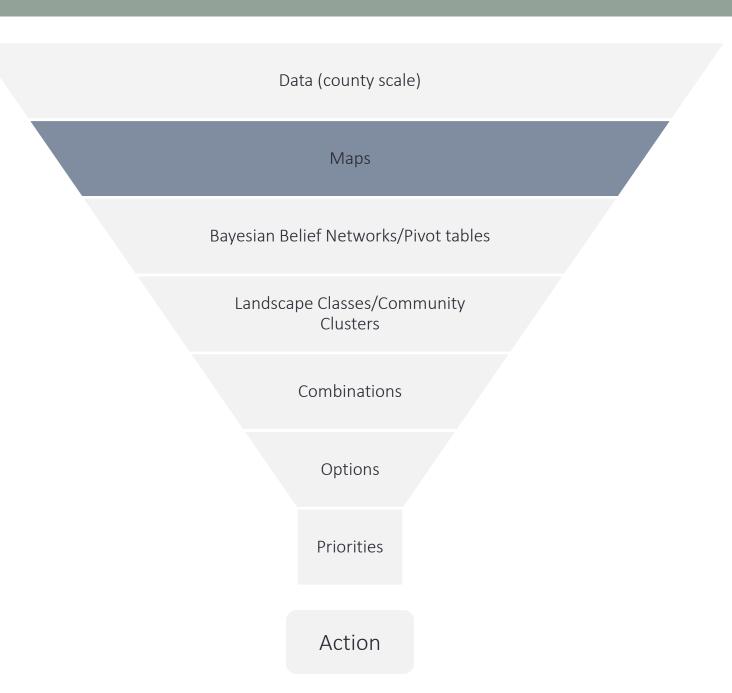
These data have been summarized and consolidated into the COUNTY level in order to provide a comparable unit of analysis across data sets.

Different methods for exploring data

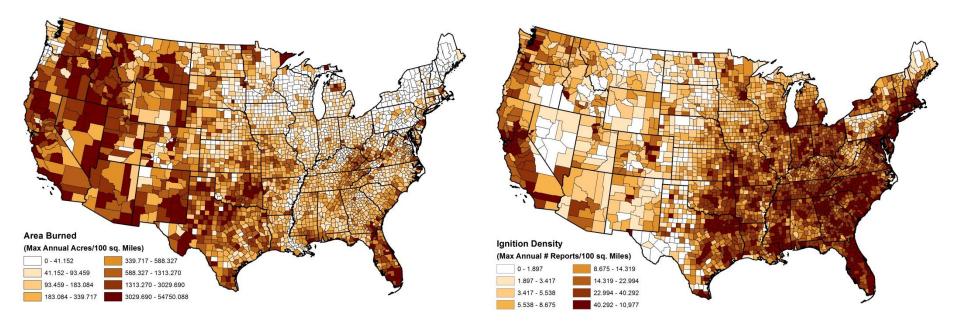
AZ CA CO ID KS MT ND NE NM NV OR SD UT WA WY

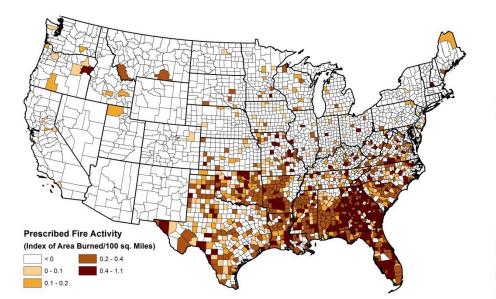
Terrain Factor Score WarmFact1 WetFact2 -1.6 to -0.7 16 -3 to -1 18.2 -2.5 to -1 Region -0.7 to -0.4 -1 to -0.5 14. -1 to -0.4 15.1 13.7 18.6 33.4 43.2 23.5 25.7 -0.5 to 0 17. -0.4 to 0 -0.4 to 0 NE SE WS 0 to 0.4 0 to 0.5 16.9 0 to 0.4 0.5 to 1 1 to 4 0.4 to 1 1 to 7 0.4 to 1 7.33 12.3 22. 1 to 5.1 20 0.0769 ± 1.3 0.118 ± 1.5 0.247 ± 1.8 Vegtation Cluster Annual Ignitions 3.83 0 to 15 13.6 101 102 103 104 105 106 107 202 203 204 205 206 207 208 209 210 211 302 303 304 302 306 13.6 13.6 15.2 15.0 9.45 5.00 8.26 1.80 7.52 15 to 30 Surface Fuel Cluster 30 to 50 50 to 75 101 6.20 5.24 6.93 7.21 4.04 5.22 6.43 2.50 7.34 2.84 6.52 6.65 6.65 8.36 2.89 5.74 2.21 5.74 2.21 5.74 2.21 102 103 75 to 100 100 to 200 18.9 >= 200 14.2 104 105 106 201 202 203 91.8 ± 82 Mechanical Treatment 24 0 to 0.1 17. Mean Burn Prob. 204 205 206 207 301 302 303 304 305 306 307 0.1 to 1 1 to 5 26.2 17.2 0 to 1e-4 1e-4 1e-4 to 4e-4 8.59 -21.0 16.7 14.8 13.2 13.1 12.7 5 to 10 9.87 10 to 25 5.21 4e-4 to 8e-4 2.32 ± 4.4 8e-4 to 0.0018 0.0018 to 0.0043 0.0043 to 0.0463 0.00393 ± 0.0093 194 ± 77 Mean Flame Intensity
 1 to 1.3
 14.5

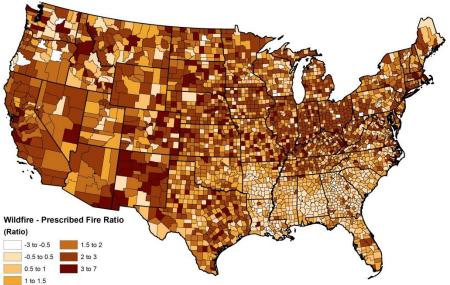
 1.3 to 1.5
 18.5

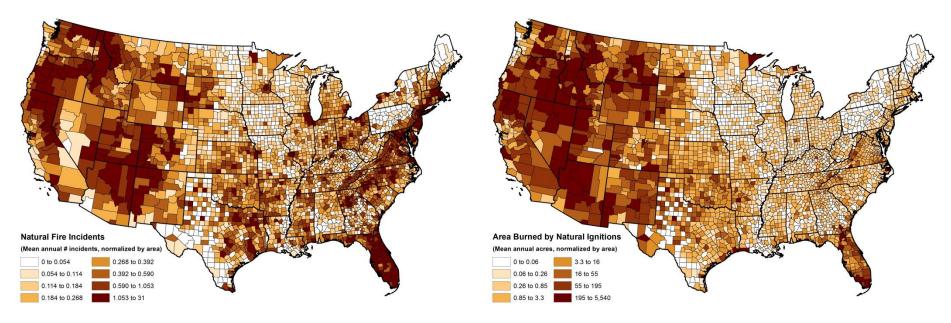

 1.5 to 1.7
 12.1

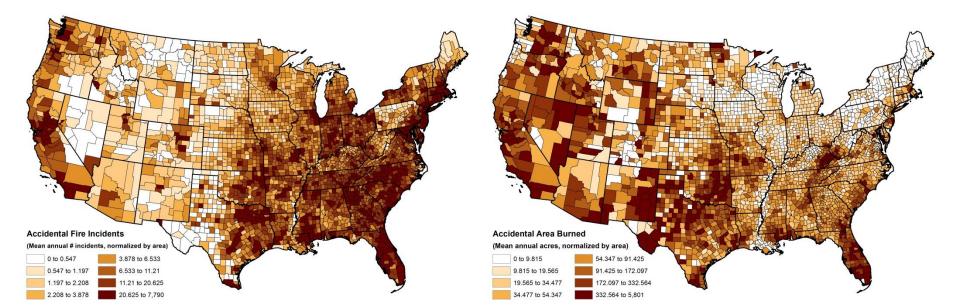
 1.7 to 2
 14.0

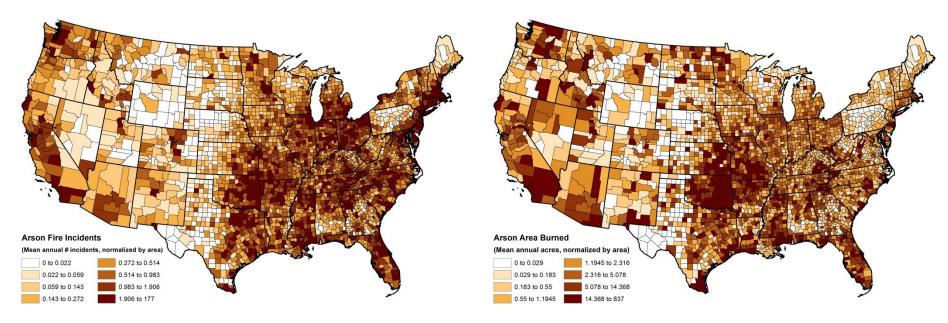

 2 to 2.5
 20.2

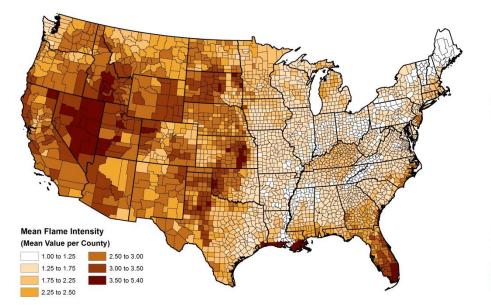

 2.5 to 3
 11.9

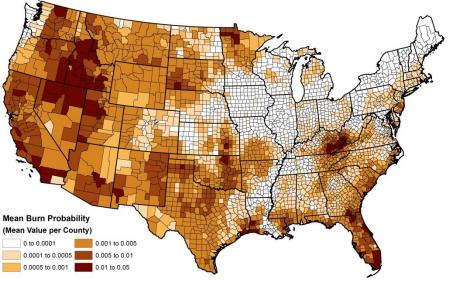

 3 to 5.4
 8.91
196 ± 75 Normalized Area Burned 2.03 ± 0.87 0 to 50 14.0 50 to 100 15.1 100 to 150 11.3 150 to 300 16.6 13.9 300 to 600 600 to 2000 14.9 14.1 >= 2000703 ± 930

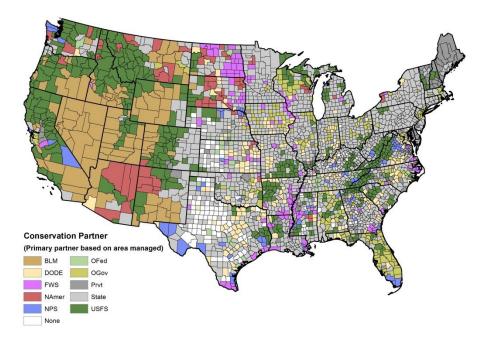

Fire Statistics

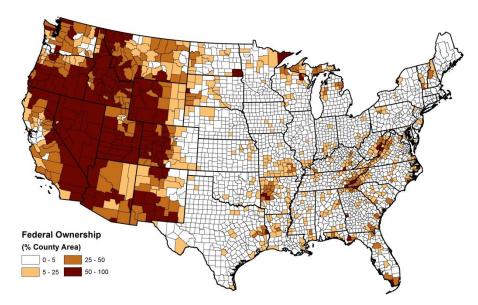


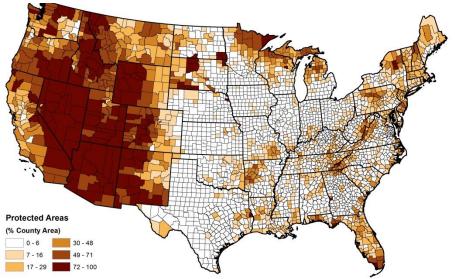


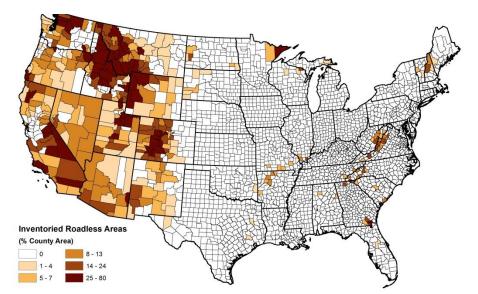

Fire Statistics



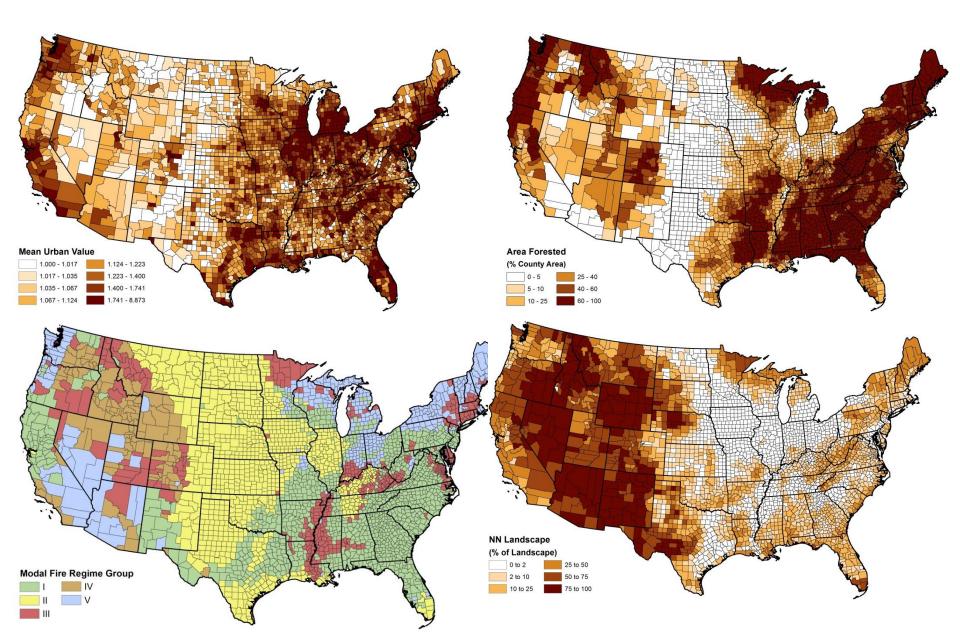

Fire Statistics

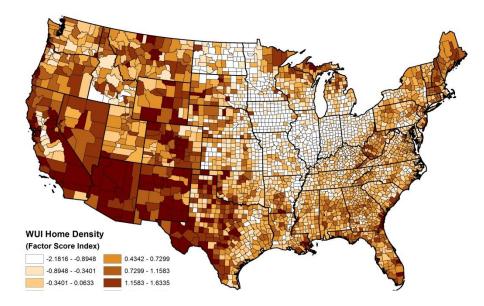


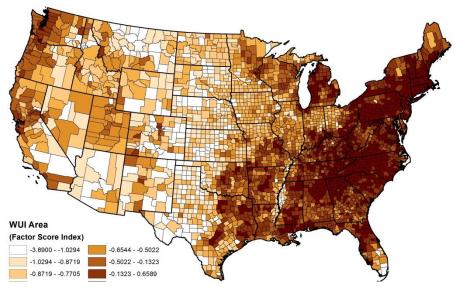


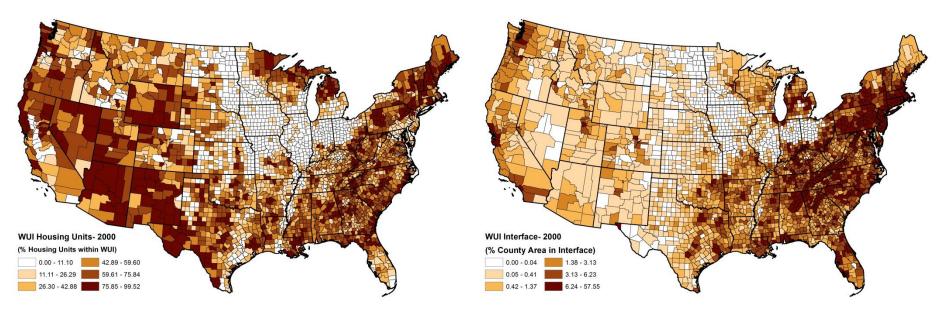


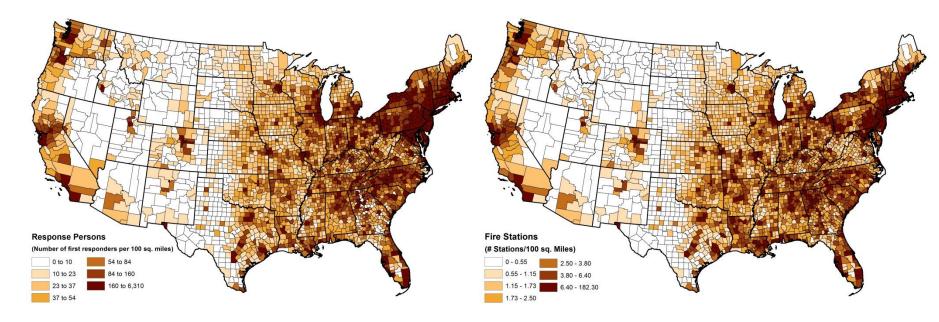
Jurisdictional Variables

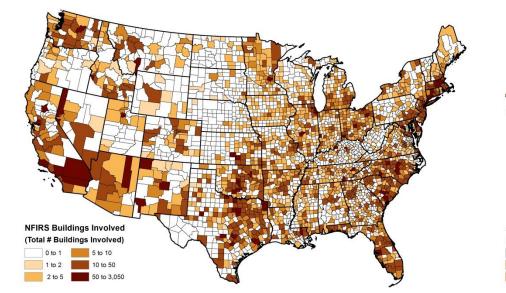


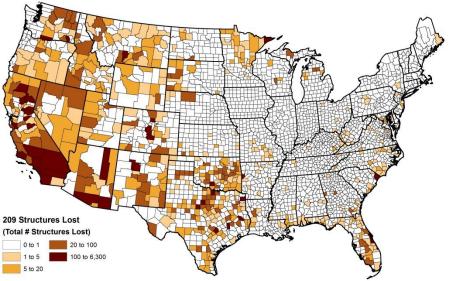


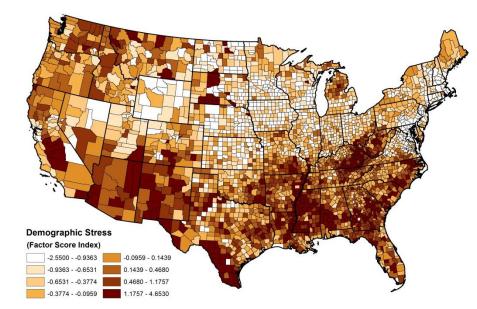


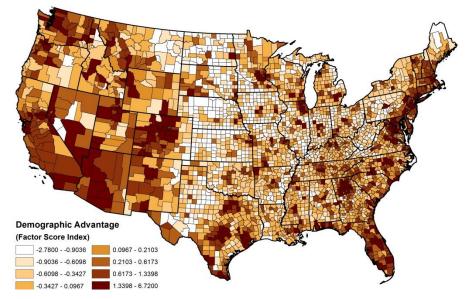

Landcover Variables

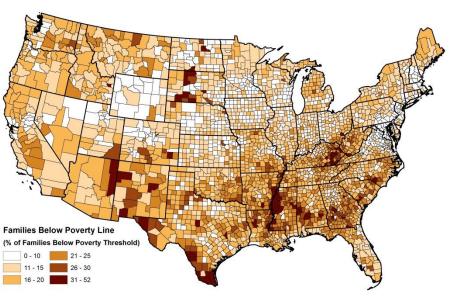

WUI Landcover Variables

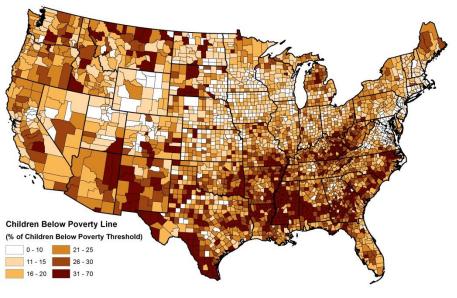




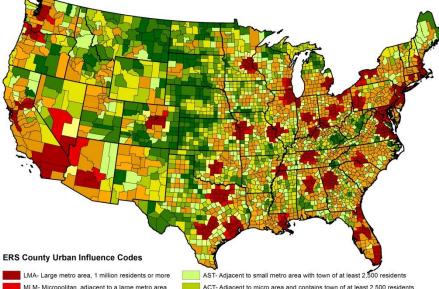

Response Variables

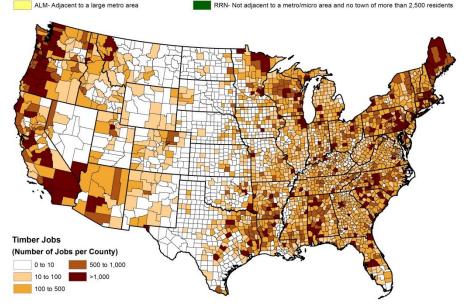


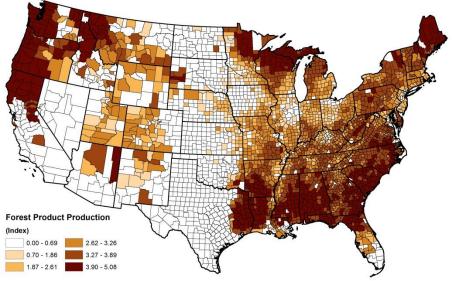




Socioeconomic/Demographic Variables






Economic Variables

MLM- Micropolitan, adjacent to a large metro area SMA- Small metro area, fewer than 1 million residents MSM- Micropolitan, adjacent to a small metro area MNA- Micropolitan, not adjacent to a metro area ALM- Adjacent to a large metro area AST- Adjacent to small metro area with town of at least 2,500 residents ACT- Adjacent to micro area and contains town of at least 2,500 residents ASN- Adjacent to small metro area and no town of more than 2,500 residents ACN- Adjacent to micro area and no town of more than 2,500 residents

RRT- Not adjacent to a metro/micro area with town of 2,500 or more residents

Dominant Economic Activity (County Economic Dependence) Farm-dependent

Mining-dependent

Service-dependent

Manufacturing-dependent

Nonspecialized-dependent

Federal/State Government-dependent